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ABSTRACT

Nodal chains in which two nodal rings connect at one point were recently discovered in non-symmorphic electronic systems and then gen-
eralized to symmorphic phononic systems. In this work, we identify a new class of planar nodal chains in non-symmorphic phononic
systems, where the connecting rings lie in the same plane. The constituting nodal rings are protected by mirror symmetry, and their inter-
section is guaranteed by the combination of time-reversal and non-symmorphic twofold screw symmetry. The connecting points are four-
fold degenerate while those in previous works are twofold degenerate. We found 8 out of 230 space groups that can host the proposed
planar nodal chain phonons. Taking wurtzite GaN (space group No. 186) as an example, the planar nodal chain is confirmed by first-princi-
ples calculations. The planar nodal chains result in two distinct classes of drumhead surface states on the [10(–1)0] and the [0001] surface
Brillouin zones. Our finding reveals a class of planar nodal chains in non-symmorphic phononic systems, expanding the catalog of topologi-
cal nodal chains and enriching the family of topological surface states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0129290

I. INTRODUCTION

Topological quantum states attract much attention in con-
densed matter physics nowadays since they delineate quantum
phase transition upon the change of topological invariants.1–5 In
the last decade, topological semimetal states, in which the low
energy excitations near band degenerate points can be described by
relativistic Dirac and Weyl equations, were found in 3D solids.6–9

Weyl and Dirac points are one zero-dimensional band degeneracies
in k space. Moreover, higher dimensional degeneracies like nodal
lines,10–13 nodal chains,14 nodal knots,15 and nodal surfaces16,17

were classified in the presence of lattice symmetries. The symmetry
constraints of lattices are essential for band degeneracies of dimen-
sions higher than zero. For example, a twofold band degenerate
point can exist without lattice symmetry, while a twofold band
degenerate line preserves under the protection of mirror symmetry
in the simplest case. However, considering numerous lattice sym-
metries in all 230 space groups, the high-dimensional band degen-
eracies are still in short supply, especially in phononic systems.

Phonons, as another elementary excitation in solids, can
also display nontrivial degeneracy and topological effects.

Phonons play an important role in heat transport, electron–
phonon energy transfer, and superconductivity. The analog of
semimetal states in phonons is not restricted by the Fermi level
since the entire frequency range of phonons can be excited and
observed in experiments, significantly enriching potential topo-
logical phononic materials. Due to the absence of the spin
degree of freedom and Kramers degeneracy, nontrivial semimetal
states in phononic systems are mostly Weyl states. According to
the dimension of degeneracy, they can be divided into 0-D Weyl
points,18–20 1-D Weyl nodal lines,21–25 and 2-D Weyl nodal
surfaces.26–29 Recently, phononic nodal lines of different shapes
were reported, including helical nodal lines,21 straight nodal
lines,22,23 and nodal rings.24,25,30,31 Taking more symmetry con-
straints into consideration, nodal rings were found to build up
chain-like geometries.14,32

Nodal chains formed by intersecting nodal rings from differ-
ent planes were discovered in electronic systems in the first place,14

where the intersection is guaranteed by non-symmorphic symme-
tries and is immune to spin–orbit coupling. The concept of nodal
chains was soon after introduced to phononic systems,30,32 whereas
the intersection is protected by symmorphic symmetries. However,
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it remains unclear whether non-symmorphic symmetry-protected
nodal chains can exist in phononic systems, which is critical given
the fact that non-symmorphic space groups count up to 157 out of
230 space groups. In addition, currently known nodal chains are
built from nodal rings in different planes, while nodal chains com-
posed of nodal rings lying in one plane are still missing.

Given the fact that phonons cannot directly couple to electro-
magnetic fields, the observation and manipulation of topological
behaviors in phononic systems are challenging. The existence of
bulk topological phononic states has been confirmed by measuring
phonon dispersion with inelastic x-ray scattering experiments,33

while topological surface phonon states are currently unachievable
due to the lack of experimental techniques. However, the calcula-
tion of the surface density of states and results of molecular
dynamics simulations34 have shown the presence of surface
phonon states, consistent with theoretical predictions. Another
approach is observing topological effects in designed mechanical
systems. Pseudospins and time-reversal breaking can be introduced
to mechanical systems, enriching their topological effects.
Quantum spin Hall-like effects,35 phononic waveguide,36 and pho-
nonic logic37 are found in artificial mechanical systems.
Considering the difficulty in experiments, theoretical predictions
and calculations are essential in finding new topological phonon
materials.

In this work, we identify a new class of planar nodal chains
protected by non-symmorphic symmetries in phononic systems.
The constituting nodal rings lie in the same mirror-invariant plane,
thus named planar nodal chains. Their intersection point is a four-
fold degenerate point that is protected from gapping by a combina-
tion of time-reversal symmetry and non-symmorphic screw
symmetry. The symmetry conditions do not apply to electronic
systems due to the spin degree of freedom. We identified eight
space groups that can host the planar nodal chain phonons, includ-
ing known realistic materials. Based on first-principles calculations,
we demonstrated the existence of planar nodal chain phonons in a
representative material, wurtzite GaN. In addition, the planar nodal
chain leads to arc states both on surface Brillouin zones oblique to
the mirror plane and perpendicular to the mirror plane, facilitating
experimental verification.

II. SYMMETRY CONSTRAINTS

Nodal rings are one-dimensional degeneracies in three-
dimensional momentum space. The codimension is two, so extra
crystal symmetries are needed to stabilize the nodal lines (rings).
One of them is mirror symmetry Mx :(x, y, z, t) ↦ (�x, y, z, t).
Here, we take x ¼ 0 as the mirror-invariant plane. In phonon
systems without the spin degree of freedom, M2

x ¼ 1, and the
eigenvalues of Mx are +1. Eigenstates with opposite mirror eigen-
values are forbidden to hybridize, enabling twofold band degener-
acy, that is, the nodal ring, as shown in Fig. 1(a). We refer to the
degenerate states as jfþi and jf�i, where the subscripts denote
mirror eigenvalues. Introducing more symmetry, the band degener-
acy can expand to fourfold at certain points, as explained below.

A combination of time-reversal symmetry T and twofold
screw symmetry Sz guarantees Kramers degeneracy in the kz ¼ π
plane in spinless systems, forming nodal surfaces.16 We

demonstrate as follows that T , Sz , and Mx together generate two
sets of twofold irreducible representations in the (kx ¼ 0, kz ¼ π)
high symmetry line and further lead to a fourfold degenerate point.
In real space, T and Sz act as

T :(x, y, z, t) ↦ (x, y, z, � t),

Sz :(x, y, z, t) ↦ �x, � y, z þ 1
2

, t

� �
,

(1)

while in momentum space,

T :(kx , ky , kz) ↦ (�kx , � ky , � kz),
Sz :(kx , ky , kz) ↦ (�kx , � ky , kz):

(2)

We have [T , Sz] ¼ 0, and the combined symmetry S ¼ T Sz

acts as

S:(x, y, z, t) ↦ �x, � y, z þ 1
2

, � t

� �
,

(kx , ky , kz) ↦ (kx , ky , � kz):
(3)

Notice that S2
z is equal to a translation along the z axis by a

lattice constant, so we have S2 ¼ S2
z ¼ �1 when kz ¼ π.

Meanwhile, S preserves k vector since kz ¼ π is equivalent to
kz ¼ �π. So, S ensures Kramers degeneracy in the kz ¼ π plane,
making all representations twofold irreducible. Adding this condi-
tion to the mirror plane where kx ¼ 0, jfþi and jf�i are

FIG. 1. (a) Sketch of the nodal ring formed on the mirror plane where kx ¼ 0.
jfþi and jf�i are forbidden to hybridize. (b) Four orthogonal states jfþi,
jf�i, Sjfþi, and Sjf�i generating a fourfold degenerate point in the
(kx ¼ 0, kz ¼ π) high symmetry line. (c) Illustration of the nodal chain14,32 and
the planar nodal chain (this work). Mx and My denote mirror planes. Solid lines
denote nodal rings.
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inseparable from the other two states, Sjfþi and Sjf�i. The fol-
lowing four states are forbidden from hybridization along the high
symmetry line (kx ¼ 0, kz ¼ π):

jfþi, jf�i, Sjfþi, Sjf�i:

To prove their orthogonality, we take jfþi as an example.
jfþi and Sjfþi are Kramers pairs, so they are immune from
hybridization. jfþi and jf�i are protected by opposite mirror
eigenvalue. Since S and Mx commute, Sjf�i has the mirror
eigenvalue −1, preventing it from hybridizing with jfþi. Therefore,
the four states are capable to produce a fourfold degenerate point
in the (kx ¼ 0, kz ¼ π) high symmetry line [see Fig. 1(b)].

The accidental band crossing mechanism guarantees that the
fourfold degenerate point is stable in a wide range of the parameter
space38 as long as the symmetries Mx , T , and Sz preserve. Unlike
Dirac points which are isolated gap-closing points, the fourfold
degenerate point serves as the crossing point of multiple nodal
rings. Specifically, three kinds of nodal rings each between two
adjacent bands are presented in wurtzite GaN, which will be veri-
fied by calculation in Sec. IV, as shown in Fig. 1(c). All intersecting
nodal rings are in the mirror plane kx ¼ 0, thus named the planar
nodal chain.

The discussion above can be generalized to space groups in
which the three symmetries Mα , Sβ , and T are present, where α
and β are two nonparallel directions, denoting the mirror plane
direction and the screw axis, respectively. Since the screw symmetry
is non-symmorphic, the symmetry conditions only apply to non-
symmorphic space groups. In addition, the mirror symmetry-
protected nodal rings break down in the presence of spin–orbit
coupling, so the symmetry conditions are not valid in electronic
systems. Among all 230 space groups, we identified 8 candidates
for the planar nodal chain phonons, as listed in Table I. Some real-
istic materials are also given, of which Si2N2O is a kind of ceramic,
GaN and AlN are wide bandgap semiconductors, and NaS is used
in sodium–sulfur batteries. In the following, we will take wurtzite
GaN (space group No.186) as an example to illustrate the planar
nodal chain phonons. Wurtzite GaN is widely used in high-power
electronics due to its wide bandgap and high carrier density. Yet,
their performance and lifetime are restricted by heat dissipation

efficiency. The exploration of topological phonon states offers new
opportunities for tuning phonon transport in GaN devices.

III. COMPUTATION DETAILS

The phonon spectrum of wurtzite GaN is studied using
density functional theory (DFT). All DFT calculations are per-
formed with the Vienna Ab initio Simulation Package (VASP).39

Projective augmented wave pseudopotential40 in Perdew–Burke–
Ernzerhof41 formalism is employed for the exchange-correlation
functional. The Phonopy package42 is used to construct phonon
dynamical matrices and compute the phonon dispersion. Iterative
Green’s function method43 as implemented in WannierTools44 is
adopted to obtain the phonon surface state spectrum.

Lattice constants of wurtzite GaN are optimized under con-
straints of symmetry first. The electronic self-consistent loops are
stopped when the total free energy drop between successive steps is
below 10−7 eV. The break condition of ionic relaxation is that the
norms of all the forces are smaller than 10−3 eV/Å. After relaxation,
density functional perturbation theory is performed on a 4 � 4 � 3
supercell with a Γ-centered 4 � 4 � 3 k mesh to extract the second-
order force constants. The phonon dispersion on high symmetry
paths and two planes of interest (the kx ¼ 0 plane and the kz ¼ π
plane) are computed. The absence of imaginary frequencies in the
phonon spectrum indicates that the relaxed structure is dynami-
cally stable. To examine the existence of surface states, the phonon
local density of states (LDOS) is calculated by iterative Green’s
function, in which the surface Hamiltonian is taken as simple
stacks of the bulk tight-binding Hamiltonian.

IV. RESULTS AND DISCUSSION

Wurtzite GaN belongs to space group No. 186 (P63mc). Its
unit cell is shown in Fig. 2(a). There are four atoms in the unit
cell and, thus, are 12 phonon branches. The optimized lattice con-
stants are a ¼ 3:216 Å and c ¼ 5:240 Å. Figure 2(b) shows the
first Brillouin zone of bulk GaN and the projected surface
Brillouin zones on the [0001] surface and the [10(–1)0] surface.
High symmetry points in bulk and surface Brillouin zones are
labeled. The generators of space group No. 186 are mirror sym-
metry Mx, twofold screw symmetry S2z and threefold rotation
symmetry C3z. As discussed above, the mirror symmetry Mx is
capable to protect the nodal rings in the mirror-invariant plane
Γ-A-L-M. The twofold screw symmetry S2z and time-reversal
symmetry T ensure Kramers degeneracy in the kz ¼ π plane, i.e.,
the A-L-H plane, making it a nodal surface (NS) for all bands,
which means every phonon band in the kz ¼ π plane is twofold
degenerate. Mx , S2z , and T together generate a planar nodal
chain in the Γ-A-L-M plane. Figure 2(c) displays the phonon dis-
persion of wurtzite GaN along high symmetry paths, along with
the nodal plane A-L-H and the fourfold degenerate point
D. Calculation results show the coordinate of the D point is
(0:384, 0, 0:5) in reciprocal lattice units and the degenerate fre-
quency at the D point is 4.93 THz.

To verify the existence of the nodal rings and the planar nodal
chains, we thoroughly calculate the phonon dispersion in three
dimensions in k space. The exact shape of the planar nodal chain is
plotted in Fig. 3(a), which is similar to that in Fig. 1(c), that is,

TABLE I. The complete list of all space groups that can host planar nodal chains.

Bravais lattice

Space
group

number
Space group

symbol Generators
Typical
material

Orthorhombic 26 Pmc21 S2z , Mx CaF2
a

36 Cmc21 S2z , Mx Si2N2O
63 Cmcm S2z , Mx CaSia

67 Cmme S2y , Mx FeSea

Hexagonal 185 P63cm S2z , Mx Li2PS3
a

186 P63mc S2z , Mx GaN
193 P63/mcm S2z , Mx TiCl3

a

194 P63/mmc S2z , Mx NaS

aUnstable materials.
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three kinds of nodal rings intersect at the D point. Although not
shown, there are also planar nodal chains in five other direc-
tions due to sixfold screw symmetry, which is a combination of
twofold screw symmetry and threefold rotational symmetry. The
blue lines are the degenerate lines of the first and second bands,
the cyan ones are of the second and third bands, and the red
ones are of the third and fourth bands, as shown in Fig. 3(b).
Taking the cyan nodal ring as an example, Fig. 3(c) shows the
phonon dispersion in the kx � kz plane near D-L-D’, proving
the cyan nodal ring formed by the crossing of the second and
third bands. Viewed in the kx ¼ 0 plane, D is the intersecting
point of nodal rings, while viewed in the kz ¼ π plane, D is an
isolated band touching point that looks like the Dirac point in
graphene,45 as shown in Fig. 3(d).

To further confirm that the fourfold degenerate states are
jfþi, jf�i, Sjfþi, and Sjf�i as discussed in our theory, we
examine the eigenvectors of phonons, i.e., the atom vibration direc-
tions. Mirror eigenvalue +1 means the state is mapped to itself by
the mirror symmetry, so the atoms must vibrate in the x ¼ 0 plane.
Conversely, mirror eigenvalue −1 corresponds to atoms vibrating
out of the x ¼ 0 plane. The atom vibration directions of four

degenerate bands at the D point are found to be two in-planes and
two out-of-planes, verifying our prediction.

Next, we calculate the Berry phase γ along a closed path encir-
cling the nodal ring,

γ ¼ i
Þ P

n[occ:
un,kj @

@k
jun,k

� �
dk: (4)

The summation is done on occupied bands. All nodal rings
have a Berry phase of π, indicating linear dispersion in the neigh-
borhood of nodal rings.23 Note that when both inversion and time-
reversal symmetry are preserved, the Berry phase along any closed
path is a multiple of π, so the integration path can arbitrarily
deform as long as the gap is not closed. While in the case of wurt-
zite GaN where inversion symmetry is broken, the integration path
is chosen close enough to the nodal ring to get a nearly-quantized
Berry phase.

Nodal rings are accompanied by drumhead surface states
on the surface.32 In the presence of chiral symmetry, drumhead
states are limited to the same energy, leading to surface

FIG. 3. (a) The planar nodal chains in k space. The red, blue, and cyan lines
denote three kinds of nodal rings and D is their crossing point. For clarity, the
planar nodal chains in five other directions (A-L1, A-L2, A-L3, A-L4, and A-L5)
are not plotted, since they have the same shape due to sixfold screw symmetry.
(b) The planar nodal chains plotted in the Γ-A-L-M plane. Numbers denote the
occupation numbers of the nodal rings. For example, the cyan line is labeled 2,
which means it is the degenerate line of the second and third bands. (c)
Phonon dispersion of the second and third band in the kx ¼ 0 plane. The
planar nodal chains formed by their crossing are represented by cyan lines. (d)
Phonon dispersion near the D point in the kz ¼ π plane. The first and second
branches are degenerate. The third and fourth branches are degenerate. D is
an isolated fourfold degenerate point in this plane.

FIG. 2. (a) The lattice structure of wurtzite GaN. (b) First Brillouin zone of bulk
GaN and its projection on the [0001] surface (blue) and the [10(–1)0] surface
(magenta). (c) Phonon dispersions along high symmetry paths of wurtzite GaN.
Nodal surface (NS) degeneracies are denoted by solid blue lines. The green
circle marks the fourfold degenerate point, D.
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superconductivity.46 In phonon systems without chiral symme-
try, the flatness of drumhead surface states is coincidental,
depending on the surface roughness. We found drumhead
surface states on two distinct surfaces, i.e., the [10(–1)0] surface
and the [0001] surface. The phonon local density of states
(LDOS) on the [10(–1)0] surface is shown in Fig. 4(a). The path
is chosen as �A-�L-�A

0
. The projection of the D point corresponds

to the cone-shaped LDOS, verifying the semimetal-like point
formed by band inversion. Drumhead surface states emanate
from �D in both directions, while those of a single nodal ring
only spread in one direction of the nodal ring. The number of
surface state branches also multiplies since D belongs to three
nodal rings simultaneously. This further increases the surface
density of states at �D and benefits experimental verification.
However, the drumhead states are not flat in energy due to the
lack of chiral symmetry.

It is worth noting that previously reported nodal links or
nodal chains are located on orthogonal mirror-symmetric
planes, in both electrons14 and phonons.47 Drumhead surface
states, emerging with nodal rings, are bounded by the projection
of nodal rings on the surface Brillouin zone. However, mirror
planes in wurtzite GaN are rotational-symmetric, which enables
us to find a surface that is perpendicular to all mirror planes,
i.e., the [0001] surface. The projections of mirror planes are one-

dimensional lines on the [0001] surface. The projections of
nodal rings are discrete line segments. However, thanks to the
intersection of nodal rings, segments from different mirror
planes [the cyan lines in Fig. 3(a)] still form a net on the [0001]
surface Brillouin zone. Surface arc states connecting the nodal
net on this surface are found, as shown in Fig. 4(c). Moreover,
the connection is valid in a wide region in k space. We choose
two paths, D-D’ and E-E’, shown in Fig. 4(b), where D is
(0:384, 0) and E is (0:3, 0) in reciprocal lattice units. The
phonon surface LDOS along them exhibits robust surface states,
as shown in Figs. 4(d)–4(e).

The shape of the planar nodal chains in wurtzite GaN can be
abstracted into multiple intersecting rings, as shown in Fig. 5(d),
although they are not perfect circles in the realistic phonon spec-
trum. This simplified description can be generalized to other candi-
date space groups, where the planar nodal chains lie in the
mirror-invariant plane, as plotted in Figs. 5(a)–5(c). Note that
space groups 36, 63, and 67 all have the base-centered orthorhom-
bic Bravais lattice, so they share the same first Brillouin zone shape.
The same applies to space groups 185, 186, 193, and 194, which
share the hexagonal Bravais lattice. In addition, the screw symmetry
in space group 67 is Sy , while that in other candidate space groups
is Sz , resulting in the difference in the direction of the planar nodal
chains, as shown in Figs. 5(b) and 5(c).

FIG. 4. (a) Phonon local density of states on the [10(–1)0] surface of wurtzite GaN along the �A-�L-�A0 path. Surface states emanating from the surface projection of D
points are visible. (b). The [0001] surface Brillouin zone along with two k-paths, D-D0 and E-E0 . (c) Iso-frequency surface at 4.93 THz on the [0001] surface Brillouin zone.
(d) and (e) Phonon local density of states along D-D0 and E-E0, proving that the surface state is valid in a wide region in k space.
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V. CONCLUSIONS

In summary, we first identified a class of symmetry-enforced
planar nodal chains in non-symmorphic phononic systems. The
symmetry constraints of the planar nodal chain include mirror
symmetry Mx, time-reversal symmetry T , and non-symmorphic
screw symmetry S2z. We identified 8 out of 230 space groups with
proper symmetries to host the planar nodal chain. Using wurtzite
GaN as an example, we illustrate the nodal chain phonons in detail
based on first-principles calculations. Phonon surface density of
states is calculated on the [10(–1)0] and the [0001] surface using
iterative Green’s function method. The former is inclined to the
mirror plane while the latter is perpendicular to the mirror plane.
Drumhead surface states are found inside the nodal ring, outside
the nodal ring, and connecting different nodal rings. Our study
reveals a class of symmetry-enforced planar nodal chain phonons
in non-symmorphic materials and expands the catalog of topologi-
cal nodal chains and related surface states.
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